A Robust and Efficient Doubly Regularized Metric Learning Approach

نویسندگان

  • Meizhu Liu
  • Baba C. Vemuri
چکیده

A proper distance metric is fundamental in many computer vision and pattern recognition applications such as classification, image retrieval, face recognition and so on. However, it is usually not clear what metric is appropriate for specific applications, therefore it becomes more reliable to learn a task oriented metric. Over the years, many metric learning approaches have been reported in literature. A typical one is to learn a Mahalanobis distance which is parameterized by a positive semidefinite (PSD) matrix M. An efficient method of estimating M is to treat M as a linear combination of rank-one matrices that can be learned using a boosting type approach. However, such approaches have two main drawbacks. First, the weight change across the training samples maybe non-smooth. Second, the learned rank-one matrices might be redundant. In this paper, we propose a doubly regularized metric learning algorithm, termed by DRMetric, which imposes two regularizations on the conventional metric learning method. First, a regularization is applied on the weight of the training examples, which prevents unstable change of the weights and also prevents outlier examples from being weighed too much. Besides, a regularization is applied on the rank-one matrices to make them independent. This greatly reduces the redundancy of the rank-one matrices. We present experiments depicting the performance of the proposed method on a variety of datasets for various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Distance Metric Learning: Theory and Algorithm

In this paper, we examine the generalization error of regularized distance metric learning. We show that with appropriate constraints, the generalization error of regularized distance metric learning could be independent from the dimensionality, making it suitable for handling high dimensional data. In addition, we present an efficient online learning algorithm for regularized distance metric l...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

An Efficient Dual Approach to Distance Metric Learning

Distance metric learning is of fundamental interest in machine learning because the distance metric employed can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. Standard interior-point SDP solvers ...

متن کامل

Robust Distance Metric Learning with Auxiliary Knowledge

Most of the existing metric learning methods are accomplished by exploiting pairwise constraints over the labeled data and frequently suffer from the insufficiency of training examples. To learn a robust distance metric from few labeled examples, prior knowledge from unlabeled examples as well as the metrics previously derived from auxiliary data sets can be useful. In this paper, we propose to...

متن کامل

Lyapunov-Based Robust Power Controllers for a Doubly Fed Induction Generator

In this work, a robust nonlinear control technique of a doubly fed induction generator (DFIG) intended for wind energy systems has been proposed. The principal idea in this article is to decouple the active and reactive power of the DFIG with high robustness using the backstepping strategy. The principle of this control method is based on the Lyapunov function, in order to guarantee the global ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision

دوره 7575  شماره 

صفحات  -

تاریخ انتشار 2012